Deep Generative Models

1. Introduction and evaluation

• 국가수리과학연구소 산업수학혁신센터 김민중

Reference

- Stanford CS236 lecture: Deep Generative Models
- Generative Deep Learning 2nd(David Foster)
- Deep Generative Modeling(Jakub M. Tomczak)

Face generation

(adapted from Brundage et al., 2018)

Progress in Inverse Problems

Input Image

Target Text:

"A bird spreading wings"

Input Image

"A person giving the thumbs up"

Input Image

Edited Image

"A goat jumping over a cat"

Target Text:

"A sitting dog"

"Two kissing parrots"

"A children's drawing of a waterfall"

(Kawar et al., 2023)

Code Generation

🍦 parse_expenses.py	-∞ write_sql.go	<mark>⊤s</mark> sentiment.ts	🛃 addresses.rb		
1 import datetim	e				
2					
3 def parse_expe	nses(expenses_:	string):			
			n the list of tr	iples (date, va	
5					
6					
7					
8					
9					
10					
11 12					
13					
14					
15					
16					
17					
18					
19					
20					

(Codex, OpenAI)

Video Generation

(Sora, OpenAl, 2024)

What is Generative modeling

• A branch of machine learning that involves training a model to produce new data that is like a given dataset

Generative vs Discriminative modeling

- *x*: input data(e.g. image sample), *y*: label
- Discriminative modeling estimates p(y|x)
- Generative modeling estimates p(x)

= certain decision!

p(blue|x) is high and p(x) is low = uncertain decision!

The purpose of generative model

- Generation: sample x_{new} should look like training set(sampling)
- Density estimation
- Unsupervised representation learning: learn what these images have in common features

Taxonomy of Generative model approaches

Taxonomy of Generative model approaches

Taxonomy of Generative model approaches

(Yang Song)

Goal of Lecture

- We will study Generative models that view the world under the lens of probability
- In such a worldview, we can think of any kind of observed data, say D, as a finite set of samples from an underlying distribution, say p_{data}
- The goal of any generative model is to approximate this data distribution given access to the dataset *D*
- The hope is that if we can learn a good generative model, we can use the learned model for downstream inference
- Basic Probability Theory, Linear Algebra and techniques of Neural Network(e.g. CNN, RNN, Transformers, U-net etc.) are left as take-home work
- We will follow the Stanford CS236 lecture

Road map and Challenges

- **Representation:** how do we model the joint distribution of many random variables?
 - Need compact representation
- Learning: what is the right way to compare probability distributions?

- Inference: how do we invert the generation process (e.g., vision as inverse graphics)?
 - Unsupervised learning: recover high-level descriptions (features) from raw data

Overview

- What is Generative modeling?
- Generative vs Discriminative models
- Evaluating Generative models
 - Density estimation
 - Sampling/generation
 - Inception scores
 - Fréchet Inception Distance
 - Kernel Inception Distance

Evaluation

- How do we evaluate generative models?
- Evaluation of discriminative models (e.g., a classifier) is well understood compare task-specific loss(e.g., top-1 accuracy or AUROC) on unseen test data
- Evaluating generative models is highly non-trivial
- Key question: What is the task that you care about?
 - Density estimation
 - Sampling/generation

Evaluation - Density Estimation

- Likelihood as a metric for density estimation
 - Split dataset into train, validation and test sets
 - Learn model $p_{\theta}(\mathbf{x})$ using the train set
 - Tune hyperparameters on validation set
 - Evaluate generalization with likelihoods on test sets

 $E_{\boldsymbol{x} \sim p_{data}}[\log p_{\theta}(\boldsymbol{x})]$

- Remark: Not all models have tractable likelihoods e.g., VAE, GAN and EBM
 - For VAE, we can compare evidence lower bounds (ELBO) to log-likelihoods. How about GAN?
- Approximation methods are necessary. We can use kernel density estimates via samples alone.

- Given: A trained model $p_{\theta}(x)$ with an intractable/ill-defined density
- Let $S = \{x^{(1)}, x^{(2)}, \dots, x^{(6)}\}$ be 6 data points drawn from $p_{\theta}(x)$

x ⁽¹⁾	x ⁽²⁾	<i>x</i> ⁽³⁾	<i>x</i> ⁽⁴⁾	$\chi^{(5)}$	$\chi^{(6)}$
-2.1	-1.3	-0.4	1.9	5.1	6.2

• What is $p_{\theta}(-0.5)$? for $-0.5 \in \text{test set}$

• Let $S = \{x^{(1)}, x^{(2)}, \dots, x^{(6)}\}$ be 6 data points drawn from $p_{\theta}(\mathbf{x})$

x ⁽¹⁾	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$\chi^{(5)}$	$\chi^{(6)}$
-2.1	-1.3	-0.4	1.9	5.1	6.2

- What is $p_{\theta}(-0.5)$?
- Answer 1: Since $0.5 \notin S$, $p_{\theta}(-0.5) = 0$
- Answer 2: Compute a histogram

Deep Generative Models | mjgim@nims.re.kr

NIMS & AJOU University

- Answer 3: Compute kernel density estimate (KDE) over ${\mathcal S}$

$$\hat{p}(x) \coloneqq \frac{1}{N} \sum_{x^{(i)} \in S} K\left(\frac{x - x^{(i)}}{\sigma}\right)$$

- where N = |S|, σ is called the bandwidth parameter and K is a kernel function
- Example: Gaussian kernel, $K(u) \coloneqq \frac{1}{\sqrt{2\pi}} exp\left(-\frac{1}{2}u^2\right)$
- Histogram density estimate vs KDE estimate with Gaussian kernel

- A kernel *K*(·) is any non-negative function satisfying two properties
 - Normalization: $\int_{-\infty}^{\infty} K(u) du = 1$ (ensures KDE is normalized)
 - Symmetric: K(u) = K(-u) for all u
- Intuitively, a kernel is a measure of similarity between pairs of points
- Bandwidth parameter σ controls the smoothness
 - Optimal sigma (black) is such that KDE is closed to true density (grey)
 - Low sigma (red): under smoothed
 - High sigma (green): over smoothed
 - Tuned via cross validation
- Con: KDE is very unreliable in high dimension

Evaluation - Sample quality

- Which of these two sets of generated samples look better?
- Human evaluation (e.g., Mechanical Turk) is the gold standard

Evaluation - HYPE

HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models

Sharon Zhou^{*}, Mitchell L. Gordon^{*}, Ranjay Krishna, Austin Narcomey, Li Fei-Fei, Michael S. Bernstein Stanford University {sharonz, mgord, ranjaykrishna, aon2, feifeili, msb}@cs.stanford.edu

- HYPE: Human eYe Perceptual Evaluation (Zhou et al., 2019)
 - HYPE_{time}: the minimum time human needed to decide a classification. The larger, the better
 - HYPE $_{\infty}$: The percentage of samples the deceive human under unlimited time. The larger, the better
 - https://stanfordhci.github.io/gen-eval

Evaluation - HYPE

- Generalization is hard to define and assess. Memorizing the training set would give excellent samples but clearly undesirable
- Quantitative evaluation of a qualitative task can have many answers
- Popular metrics: Inception Scores, Fréchet Inception Distance Scores, Kernel Inception Distance

- Assumption 1: We are evaluating sample quality for generative models trained on labelled datasets
- Assumption 2: We have a good probabilistic classifier c(y|x) for predicting the label y for any point(image) x
- We want samples from a good generative model to satisfy two criteria: sharpness and diversity (Salimans et al. 2016)
- Sharpness (S)

Low sharpness

High sharpness

• Diversity (D)

Low diversity

High diversity

• Sharpness (S)

 $\boldsymbol{x} \sim p_{\boldsymbol{\theta}}$

Highly confident

Lowly confident

• Sharpness (S)

Low sharpness

High sharpness

- Given: generated data x, well trained probabilistic classifier c(y|x)
- High sharpness implies classifier is confident in making predictions for generated images
- I.e., classifier's predictive districution c(y|x) has low entropy
- The label *y*~Categorical distribution

$$S \coloneqq exp\left(E_{\boldsymbol{x}\sim p_{\theta}}\left[\int c(\boldsymbol{y}|\boldsymbol{x})\log c(\boldsymbol{y}|\boldsymbol{x})\,d\boldsymbol{y}\right]\right)$$

• where p_{θ} is generative model distribution

• Diversity (D)

 $E_{\boldsymbol{x} \sim p_{\boldsymbol{\theta}}}[c(\boldsymbol{y}|\boldsymbol{x})]$

High diversity

• Diversity (D)

• High diversity implies c(y) has high entropy

$$D \coloneqq \exp\left(-\int c(y)\log c(y)\,dy\right)$$

• where $c(y) \coloneqq E_{x \sim p_{\theta}}[c(y|x)]$ is the classifier's marginal predictive distribution

 Inception scores (IS) combine the two criteria of sharpness and diversity into a simple metric

$$S \cdot D = \exp\left(-E_{\boldsymbol{x} \sim p_{\theta}}\left[\int c(y|\boldsymbol{x})(\log c(y) - \log c(y|\boldsymbol{x}))dy\right]\right)$$

• Notice that IS can be written as

$$\exp(E_{\boldsymbol{x}\sim p_{\theta}}[KL(c(\boldsymbol{y}|\boldsymbol{x}) \parallel c(\boldsymbol{y}))])$$

- Higher IS corresponds to better generation quality
- If classifiers are not available, we can not obtain Inception scores
- IS only requres samples from p_{θ} and do not consider the desired data distribution p_{data}

Fréchet Inception Distance

- Fréchet Inception Distance (FID) measures similarities in the feature representations(e.g. those learned by a pretrained classifier) for datapoints sampled from p_{θ} and the test dataset
- Computing FID
 - Let *G* denote the generated samples and *T* denote the test dataset
 - Compute feature representation F_G and F_T for G and T respectively (e.g., prefinal layer of Inception Net)
 - Fit a multivariate Gaussian to each of F_G and F_T .
 - Let (μ_G, Σ_G) and (μ_F, Σ_F) denote the mean and covariances of the two Gaussians
 - FID is defined as the 2nd Wasserstein distance between these two Gaussians(Heusel et al. 2017)

Fréchet Inception Distance

 FID is defined as the 2nd Wasserstein distance between these two Gaussians:

 $FID = \|\mu_T - \mu_G\|_2^2 + Tr\left(\Sigma_T + \Sigma_G - 2(\Sigma_T \Sigma_G)^{1/2}\right)$

- Lower FID implies better sample quality
- Feature representations are assumed to follow Multivariate Gaussian

Kernel Inception Distance

- Maximum Mean Discrepancy (MMD) is a two-sample test statistic that compares samples from two distributions p and q by computing differences in their moments (mean, variances etc.)
- **Key idea**: Use a suitable kernel e.g., Gaussian kernel to measure similarity between points

$$MMD(p,q) = E_{x,x' \sim p}[K(x,x')] + E_{x,x' \sim q}[K(x,x')] -2E_{x \sim p,x' \sim q}[K(x,x')]$$

- Intuitively, MMD is comparing the "similarity" between samples within p and q individually to the samples from the mixture of p and q
- Kernel Inception Distance (KID): compute the MMD in the feature space of a classifier (e.g., Inception Network) (Bińkowski et al., 2018)

Summary

- How do we evaluate generative models?
- For unsupervised evaluation, metrics can significantly vary based on end goal: Density estimation, sampling, latent representations
 - Kernel density estimation
 - Inception scores
 - Fréchet inception distance
 - Kernel inception distance

Thanks