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1. Introduction and evaluation
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Similarly, it is much easier to train a model to predict if a page of text was written by
Charles Dickens than it is to build a model to generate a set of paragraphs in the style
of Dickens. Until recently, most generative challenges were simply out of reach and
many doubted that they could ever be solved. Creativity was considered a purely
human capability that couldn’t be rivaled by AI.

However, as machine learning technologies have matured, this assumption has grad‐
ually weakened. In the last 10 years many of the most interesting advancements in the
field have come through novel applications of machine learning to generative model‐
ing tasks. For example, Figure 1-3 shows the striking progress that has already been
made in facial image generation since 2014.

Figure 1-3. Face generation using generative modeling has improved significantly over
the last decade (adapted from Brundage et al., 2018)1

As well as being easier to tackle, discriminative modeling has historically been more
readily applicable to practical problems across industry than generative modeling.
For example, a doctor may benefit from a model that predicts if a given retinal image
shows signs of glaucoma, but wouldn’t necessarily benefit from a model that can gen‐
erate novel pictures of the back of an eye.

However, this is also starting to change, with the proliferation of companies offering
generative services that target specific business problems. For example, it is now pos‐
sible to access APIs that generate original blog posts given a particular subject matter,
produce a variety of images of your product in any setting you desire, or write social
media content and ad copy to match your brand and target message. There are also
clear positive applications of generative AI for industries such as game design and
cinematography, where models trained to output video and music are beginning to
add value.

What Is Generative Modeling? | 7

Face generation

(adapted from Brundage et al., 2018) 
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Progress in Inverse Problems

Imagic: Text-Based Real Image Editing with Diffusion Models

Bahjat Kawar˚ 1,2 Shiran Zada˚ 1 Oran Lang1 Omer Tov1

Huiwen Chang1 Tali Dekel1,3 Inbar Mosseri1 Michal Irani1,3
1Google Research 2Technion 3Weizmann Institute of Science

Input Image

Target Text:

Edited Image

“A bird spreading 
wings”

Target Text: “A sitting dog”

Input Image Edited Image

“A person giving 
the thumbs up”

“Two kissing 
parrots”

Input Image Edited Image

“A goat jumping 
over a cat”

“A children’s drawing
of a waterfall”

Figure 1. Imagic – Editing a single real image. Our method can perform various text-based semantic edits on a single real input image,
including highly complex non-rigid changes such as posture changes and editing multiple objects. Here, we show pairs of 1024ˆ1024
input (real) images, and edited outputs with their respective target texts.

Abstract

Text-conditioned image editing has recently attracted
considerable interest. However, most methods are cur-
rently limited to one of the following: specific editing types
(e.g., object overlay, style transfer), synthetically generated
images, or requiring multiple input images of a common
object. In this paper we demonstrate, for the very first
time, the ability to apply complex (e.g., non-rigid) text-
based semantic edits to a single real image. For exam-
ple, we can change the posture and composition of one
or multiple objects inside an image, while preserving its
original characteristics. Our method can make a stand-
ing dog sit down, cause a bird to spread its wings, etc.
– each within its single high-resolution user-provided nat-
ural image. Contrary to previous work, our proposed
method requires only a single input image and a target
text (the desired edit). It operates on real images, and

˚ Equal contribution.
The first author performed this work as an intern at Google Research.
Project page: https://imagic-editing.github.io/.

does not require any additional inputs (such as image
masks or additional views of the object). Our method,
called Imagic, leverages a pre-trained text-to-image diffu-
sion model for this task. It produces a text embedding
that aligns with both the input image and the target text,
while fine-tuning the diffusion model to capture the image-
specific appearance. We demonstrate the quality and versa-
tility of Imagic on numerous inputs from various domains,
showcasing a plethora of high quality complex semantic
image edits, all within a single unified framework. To better
assess performance, we introduce TEdBench, a highly chal-
lenging image editing benchmark. We conduct a user study,
whose findings show that human raters prefer Imagic to pre-
vious leading editing methods on TEdBench.

1. Introduction

Applying non-trivial semantic edits to real photos has
long been an interesting task in image processing [41].
It has attracted considerable interest in recent years, en-
abled by the considerable advancements of deep learning-
based systems. Image editing becomes especially impres-
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(Kawar et al., 2023) 
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Code Generation

(Codex, OpenAI) 
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Video Generation

(Sora, OpenAI, 2024) 
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What is Generative modeling

• A branch of machine learning that involves training a model to 
produce new data that is like a given dataset
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Generative vs Discriminative modeling

• 𝒙: input data(e.g. image sample), 𝑦: label
• Discriminative modeling estimates 𝑝(𝑦|𝒙)
• Generative modeling estimates 𝑝(𝒙)DEEP GENERATIVE MODELING: WHY DO WE NEED IT?

39

Thus, learning the conditional is only a part of the story!
How can we learn p(x)?
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The purpose of generative model

• Generation: sample 𝒙!"# should look like training set(sampling)
• Density estimation
• Unsupervised representation learning: learn what these images 

have in common features
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Taxonomy of Generative model approaches

Generative 
model

Explicit density Approximate 
density

Implicit density

Tractable 
density

Variational 
Autoencoder

Energy based 
model

Diffusion model

Autoregressive 
model

Normalizing 
Flow

GAN
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Taxonomy of Generative model approaches

Generative 
model

Autoregressive
model

Implicit model

Energy-based 
model

Prescribed 
model

Flow-based 
model

Latent Variable 
model
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Taxonomy of Generative model approaches

(Yang Song) 

Generative 
model

GAN

Score based 
model

Autoregressive 
model, Flow, 
EBM, VAE

Likelihood 
based model

Implicit 
generative 
model
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Goal of Lecture

• We will study Generative models that view the world under the 
lens of probability

• In such a worldview, we can think of any kind of observed data, 
say 𝐷, as a finite set of samples from an underlying distribution, 
say 𝑝$%&%

• The goal of any generative model is to approximate this data 
distribution given access to the dataset 𝐷

• The hope is that if we can learn a good generative model, we can 
use the learned model for downstream inference

• Basic Probability Theory, Linear Algebra and techniques of Neural 
Network(e.g. CNN, RNN, Transformers, U-net etc.) are left as 
take-home work

• We will follow the Stanford CS236 lecture
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Road map and Challenges

• Representation: how do we model the joint distribution of many 
random variables?
• Need compact representation

• Learning: what is the right way to compare probability 
distributions?

• Inference: how do we invert the generation process (e.g., vision 
as inverse graphics)?
• Unsupervised learning: recover high-level descriptions 

(features) from raw data

Model family
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Overview

• What is Generative modeling?
• Generative vs Discriminative models
• Evaluating Generative models
• Density estimation
• Sampling/generation

• Inception scores
• Fréchet Inception Distance
• Kernel Inception Distance
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Evaluation

• How do we evaluate generative models?
• Evaluation of discriminative models (e.g., a classifier) is well 

understood compare task-specific loss(e.g., top-1 accuracy or 
AUROC) on unseen test data

• Evaluating generative models is highly non-trivial
• Key question: What is the task that you care about?
• Density estimation
• Sampling/generation
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Evaluation – Density Estimation

• Likelihood as a metric for density estimation
• Split dataset into train, validation and test sets
• Learn model 𝑝'(𝒙) using the train set
• Tune hyperparameters on validation set
• Evaluate generalization with likelihoods on test sets

𝐸𝒙~*!"#" log 𝑝'(𝒙)
• Remark: Not all models have tractable likelihoods e.g., VAE, GAN 

and EBM
• For VAE, we can compare evidence lower bounds (ELBO) to 

log-likelihoods. How about GAN?
• Approximation methods are necessary. We can use kernel density 

estimates via samples alone.
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Kernel Density Estimation

• Given: A trained model 𝑝'(𝑥) with an intractable/ill-defined 
density

• Let S = {𝑥 + , 𝑥 , , ⋯ , 𝑥 - } be 6 data points drawn from 𝑝'(𝑥)

• What is 𝑝' −0.5 ? for −0.5 ∈ test set

𝑥 + 𝑥 , 𝑥 . 𝑥 / 𝑥 0 𝑥 -

−2.1 −1.3 −0.4 1.9 5.1 6.2
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Kernel Density Estimation

• Let 𝑆 = 𝑥 + , 𝑥 , , ⋯ , 𝑥 - be 6 data points drawn from 𝑝'(𝒙)

• What is 𝑝' −0.5 ?              
• Answer 1: Since 0.5 ∉ 𝑆, 𝑝' −0.5 = 0
• Answer 2: Compute a histogram

𝑥 + 𝑥 , 𝑥 . 𝑥 / 𝑥 0 𝑥 -

−2.1 −1.3 −0.4 1.9 5.1 6.2
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Kernel Density Estimation

• Answer 3: Compute kernel density estimate (KDE) over

�̂� 𝑥 ≔
1
𝑁
E
1(%)∈3

𝐾
𝑥 − 𝑥(5)

𝜎
• where 𝑁 = |𝑆|, 𝜎 is called the bandwidth parameter and 𝐾 is a 

kernel function

• Example: Gaussian kernel, 𝐾 𝑢 ≔ +
,7
𝑒𝑥𝑝 − +

,
𝑢,

• Histogram density estimate vs KDE estimate with Gaussian kernel
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Kernel Density Estimation

• A kernel 𝐾 ⋅ is any non-negative function satisfying two 
properties
• Normalization: ∫89

9 𝐾 𝑢 𝑑𝑢 = 1 (ensures KDE is normalized)
• Symmetric: 𝐾 𝑢 = 𝐾(−𝑢) for all 𝑢

• Intuitively, a kernel is a measure of similarity between pairs of 
points

• Bandwidth parameter 𝜎 controls the smoothness
• Optimal sigma (black) is such that KDE is 

closed to true density (grey)
• Low sigma (red): under smoothed
• High sigma (green): over smoothed
• Tuned via cross validation

• Con: KDE is very unreliable in high dimension

Kernel Density Estimation

A kernel K is any non-negative function satisfying two properties
Normalization:

R1
�1 K (u)du = 1 (ensures KDE is also normalized)

Symmetric: K (u) = K (�u) for all u

Intuitively, a kernel is a measure of similarity between pairs of points
(function is higher when the di↵erence in points is close to 0)
Bandwidth � controls the smoothness (see right figure above)

Optimal sigma (black) is such that KDE is close to true density (grey)
Low sigma (red curve): undersmoothed
High sigma (green curve): oversmoothed
Tuned via crossvalidation

Con: KDE is very unreliable in higher dimensions
Stefano Ermon (AI Lab) Deep Generative Models Lecture 15 10 / 28
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Evaluation – Sample quality

• Which of these two sets of generated samples look better?
• Human evaluation (e.g., Mechanical Turk) is the gold standard

Evaluation - Sample quality

Which of these two sets of generated samples “look” better?

Human evaluations (e.g., Mechanical Turk) are the gold standard.

HYPE: Human eYe Perceptual Evaluation (Zhou et al., 2019)

HYPEtime: the minimum time people needed to make accurate
classifications. The larger, the better.

HYPE1: The percentage of samples that deceive people under
unlimited time. The larger, the better.

https://stanfordhci.github.io/gen-eval/

Stefano Ermon (AI Lab) Deep Generative Models Lecture 15 12 / 28

Evaluation - Sample quality

Which of these two sets of generated samples “look” better?

Human evaluations (e.g., Mechanical Turk) are the gold standard.

HYPE: Human eYe Perceptual Evaluation (Zhou et al., 2019)

HYPEtime: the minimum time people needed to make accurate
classifications. The larger, the better.

HYPE1: The percentage of samples that deceive people under
unlimited time. The larger, the better.

https://stanfordhci.github.io/gen-eval/

Stefano Ermon (AI Lab) Deep Generative Models Lecture 15 12 / 28

vs



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

Evaluation – HYPE

• HYPE: Human eYe Perceptual Evaluation (Zhou et al., 2019)
• HYPEtime: the minimum time human needed to decide a 

classification. The larger, the better
• HYPE∞: The percentage of samples the deceive human under 

unlimited time. The larger, the better
• https://stanfordhci.github.io/gen-eval

HYPE: A Benchmark for Human eYe Perceptual
Evaluation of Generative Models

Sharon Zhou⇤, Mitchell L. Gordon⇤, Ranjay Krishna,
Austin Narcomey, Li Fei-Fei, Michael S. Bernstein

Stanford University
{sharonz, mgord, ranjaykrishna, aon2, feifeili, msb}@cs.stanford.edu

Abstract

Generative models often use human evaluations to measure the perceived quality
of their outputs. Automated metrics are noisy indirect proxies, because they rely
on heuristics or pretrained embeddings. However, up until now, direct human eval-
uation strategies have been ad-hoc, neither standardized nor validated. Our work
establishes a gold standard human benchmark for generative realism. We construct
HUMAN EYE PERCEPTUAL EVALUATION (HYPE), a human benchmark that is
(1) grounded in psychophysics research in perception, (2) reliable across different
sets of randomly sampled outputs from a model, (3) able to produce separable

model performances, and (4) efficient in cost and time. We introduce two variants:
one that measures visual perception under adaptive time constraints to determine
the threshold at which a model’s outputs appear real (e.g. 250ms), and the other a
less expensive variant that measures human error rate on fake and real images sans
time constraints. We test HYPE across six state-of-the-art generative adversarial
networks and two sampling techniques on conditional and unconditional image
generation using four datasets: CelebA, FFHQ, CIFAR-10, and ImageNet. We find
that HYPE can track the relative improvements between models, and we confirm
via bootstrap sampling that these measurements are consistent and replicable.

Figure 1: Our human evaluation metric, HYPE, consistently distinguishes models from each other:
here, we compare different generative models performance on FFHQ. A score of 50% represents
indistinguishable results from real, while a score above 50% represents hyper-realism.

1 Introduction

Generating realistic images is regarded as a focal task for measuring the progress of generative models.
Automated metrics are either heuristic approximations [49, 52, 14, 26, 9, 45] or intractable density
estimations, examined to be inaccurate on high dimensional problems [24, 7, 55]. Human evaluations,
such as those given on Amazon Mechanical Turk [49, 14], remain ad-hoc because “results change
drastically” [52] based on details of the task design [36, 34, 27]. With both noisy automated and noisy
human benchmarks, measuring progress over time has become akin to hill-climbing on noise. Even
widely used metrics, such as Inception Score [52] and Fréchet Inception Distance [23], have been
discredited for their application to non-ImageNet datasets [3, 48, 8, 46]. Thus, to monitor progress,

⇤Equal contribution.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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Evaluation – HYPE

• Generalization is hard to define and assess. Memorizing the 
training set would give excellent samples but clearly undesirable

• Quantitative evaluation of a qualitative task can have many 
answers

• Popular metrics: Inception Scores, Fréchet Inception Distance 
Scores, Kernel Inception Distance

Figure 2: Example images sampled with the truncation trick from StyleGAN trained on FFHQ.
Images on the right exhibit the highest HYPE1 scores, the highest human perceptual fidelity.

psychometric function and report the minimum time people need to make accurate classifications,
and HYPE1, a simplified approach which assesses people’s error rate under no time constraint.

2.1 HYPEtime: Perceptual fidelity grounded in psychophysics

Our first method, HYPEtime, measures time-limited perceptual thresholds. It is rooted in psy-
chophysics literature, a field devoted to the study of how humans perceive stimuli, to evaluate human
time thresholds upon perceiving an image. Our evaluation protocol follows the procedure known
as the adaptive staircase method (Figure 3) [11]. An image is flashed for a limited length of time,
after which the evaluator is asked to judge whether it is real or fake. If the evaluator consistently
answers correctly, the staircase descends and flashes the next image with less time. If the evaluator is
incorrect, the staircase ascends and provides more time.

Figure 3: The adaptive staircase method shows
images to evaluators at different time exposures,
decreasing when correct and increasing when in-
correct. The modal exposure measures their per-
ceptual threshold.

This process requires sufficient iterations to con-
verge to the evaluator’s perceptual threshold: the
shortest exposure time at which they can main-
tain effective performance [11, 19, 15]. The
process produces what is known as the psycho-

metric function [60], the relationship of timed
stimulus exposure to accuracy. For example,
for an easily distinguishable set of generated
images, a human evaluator would immediately
drop to the lowest millisecond exposure.

HYPEtime displays three blocks of staircases for
each evaluator. An image evaluation begins with
a 3-2-1 countdown clock, each number display-
ing for 500ms [30]. The sampled image is then
displayed for the current exposure time. Immedi-
ately after each image, four perceptual mask im-
ages are rapidly displayed for 30ms each. These
noise masks are distorted to prevent retinal after-
images and further sensory processing after the
image disappears [19]. We generate masks us-
ing an existing texture-synthesis algorithm [44].
Upon each submission, HYPEtime reveals to the
evaluator whether they were correct.

Image exposures are in the range [100ms, 1000ms], derived from the perception literature [17].
All blocks begin at 500ms and last for 150 images (50% generated, 50% real), values empirically
tuned from prior work [11, 12]. Exposure times are raised at 10ms increments and reduced at 30ms
decrements, following the 3-up/1-down adaptive staircase approach, which theoretically leads to a
75% accuracy threshold that approximates the human perceptual threshold [35, 19, 11].

Every evaluator completes multiple staircases, called blocks, on different sets of images. As a result,
we observe multiple measures for the model. We employ three blocks, to balance quality estimates
against evaluators’ fatigue [32, 50, 22]. We average the modal exposure times across blocks to

3
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Inception Scores

• Assumption 1: We are evaluating sample quality for generative 
models trained on labelled datasets

• Assumption 2: We have a good probabilistic classifier 𝑐(𝑦|𝒙) for 
predicting the label 𝑦 for any point(image) 𝒙

• We want samples from a good generative model to satisfy two 
criteria: sharpness and diversity (Salimans et al. 2016)

• Sharpness (S)

• Diversity (D)

Inception Scores

Assumption 1: We are evaluating sample quality for generative
models trained on labelled datasets

Assumption 2: We have a good probabilistic classifier c(y |x) for
predicting the label y for any point x

We want samples from a good generative model to satisfy two
criteria: sharpness and diversity

Sharpness (S)

S = exp

✓
Ex⇠p

Z
c(y |x) log c(y |x)dy

�◆

High sharpness implies classifier is confident in making predictions for
generated images

That is, classifier’s predictive distribution c(y |x) has low entropy

Stefano Ermon (AI Lab) Deep Generative Models Lecture 15 15 / 28

Low sharpness High sharpness
Inception Scores

Diversity (D)

D = exp

✓
�Ex⇠p

Z
c(y |x) log c(y)dy

�◆

where c(y) = Ex⇠p[c(y |x)] is the classifier’s marginal predictive
distribution

High diversity implies c(y) has high entropy

Inception scores (IS) combine the two criteria of sharpness and
diversity into a simple metric

IS = D ⇥ S

Higher IS corresponds to better quality.

If classifier is not available, a classifier trained on a large dataset, e.g.,
Inception Net trained on the ImageNet dataset

Stefano Ermon (AI Lab) Deep Generative Models Lecture 15 16 / 28
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Inception Scores

• Sharpness (S)

𝒙~𝑝' 𝑐(𝑦|𝒙)

Highly 
confident

Lowly 
confident
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Inception Scores

• Sharpness (S)

• Given: generated data 𝒙, well trained probabilistic classifier 
𝑐(𝑦|𝒙)

• High sharpness implies classifier is confident in making 
predictions for generated images

• I.e., classifier’s predictive districution 𝑐(𝑦|𝒙) has low entropy
• The label 𝑦~Categorical distribution

𝑆 ≔ 𝑒𝑥𝑝 𝐸𝒙~*' O𝑐(𝑦|𝒙) log 𝑐 𝑦|𝒙 𝑑𝑦

• where 𝑝' is generative model distribution

Inception Scores

Assumption 1: We are evaluating sample quality for generative
models trained on labelled datasets

Assumption 2: We have a good probabilistic classifier c(y |x) for
predicting the label y for any point x

We want samples from a good generative model to satisfy two
criteria: sharpness and diversity

Sharpness (S)

S = exp

✓
Ex⇠p

Z
c(y |x) log c(y |x)dy

�◆

High sharpness implies classifier is confident in making predictions for
generated images

That is, classifier’s predictive distribution c(y |x) has low entropy
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Inception Scores

• Diversity (D)

𝒙~𝑝' 𝐸𝒙~*' 𝑐(𝑦|𝒙)

High 
diversity

Low 
diversity
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Inception Scores

• Diversity (D)

• High diversity implies 𝑐(𝑦) has high entropy

𝐷 ≔ exp −O𝑐(𝑦) log 𝑐 𝑦 𝑑𝑦

• where 𝑐 𝑦 ≔ 𝐸𝒙~*' 𝑐(𝑦|𝒙) is the classifier’s marginal predictive 
distribution

Inception Scores

Diversity (D)

D = exp

✓
�Ex⇠p

Z
c(y |x) log c(y)dy

�◆

where c(y) = Ex⇠p[c(y |x)] is the classifier’s marginal predictive
distribution

High diversity implies c(y) has high entropy

Inception scores (IS) combine the two criteria of sharpness and
diversity into a simple metric

IS = D ⇥ S

Higher IS corresponds to better quality.

If classifier is not available, a classifier trained on a large dataset, e.g.,
Inception Net trained on the ImageNet dataset
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Inception Scores

• Inception scores (IS) combine the two criteria of sharpness and 
diversity into a simple metric

𝑆 ⋅ 𝐷 = exp −𝐸𝒙~*' O𝑐 𝑦 𝒙 log 𝑐 𝑦 − log 𝑐 𝑦|𝒙 𝑑𝑦

• Notice that IS can be written as
exp 𝐸𝒙~*' 𝐾𝐿 𝑐 𝑦 𝒙 ∥ 𝑐 𝑦

• Higher IS corresponds to better generation quality
• If classifiers are not available, we can not obtain Inception scores
• IS only requres samples from 𝑝' and do not consider the desired 

data distribution 𝑝$%&%
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Fréchet Inception Distance

• Fréchet Inception Distance (FID) measures similarities in the 
feature representations(e.g. those learned by a pretrained 
classifier) for datapoints sampled from 𝑝' and the test dataset

• Computing FID
• Let 𝐺 denote the generated samples and 𝑇 denote the test 

dataset
• Compute feature representation 𝐹: and 𝐹; for 𝐺 and 𝑇

respectively (e.g., prefinal layer of Inception Net)
• Fit a multivariate Gaussian to each of 𝐹: and 𝐹;. 
• Let 𝜇: , Σ: and 𝜇<, Σ< denote the mean and covariances of 

the two Gaussians
• FID is defined as the 2nd Wasserstein distance between these 

two Gaussians(Heusel et al. 2017)
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Fréchet Inception Distance

• FID is defined as the 2nd Wasserstein distance between these two 
Gaussians:

𝐹𝐼𝐷 = 𝜇; − 𝜇: ,
, + 𝑇𝑟 Σ; + Σ: − 2 Σ;Σ: +/,

• Lower FID implies better sample quality
• Feature representations are assumed to follow Multivariate 

Gaussian
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Kernel Inception Distance

• Maximum Mean Discrepancy (MMD) is a two-sample test statistic 
that compares samples from two distributions 𝑝 and 𝑞 by 
computing differences in their moments (mean, variances etc.)

• Key idea: Use a suitable kernel e.g., Gaussian kernel to measure 
similarity between points

𝑀𝑀𝐷 𝑝, 𝑞 = 𝐸𝒙,𝒙(~* 𝐾(𝑥, 𝑥?) + 𝐸𝒙,𝒙(~@ 𝐾(𝑥, 𝑥?)
−2𝐸𝒙~*,𝒙(~@ 𝐾 𝑥, 𝑥?

• Intuitively, MMD is comparing the “similarity” between samples 
within 𝑝 and 𝑞 individually to the samples from the mixture of 𝑝
and 𝑞

• Kernel Inception Distance (KID): compute the MMD in the feature 
space of a classifier (e.g., Inception Network) (Bińkowski et al., 
2018)
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Summary

• How do we evaluate generative models?
• For unsupervised evaluation, metrics can significantly vary based 

on end goal: Density estimation, sampling, latent representations
• Kernel density estimation
• Inception scores
• Fréchet inception distance
• Kernel inception distance
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